Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Methods Mol Biol ; 2783: 235-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478237

RESUMO

Advances in technology and automation over the past several decades have made it feasible to perform high-throughput compound screening with cell spheroids, a valuable approach for drug discovery. It is entirely feasible to generate multiple 384-well plates containing adipose spheroids from cryopreserved, single-donor, adipose stem cells, thus incorporating genetic diversity into the discovery stages of research. In this protocol, we describe our method for isolating primary human adipose stem cells and synthesizing cell spheroids comprised of mature adipocytes and stromal cells. Also included are representative outcome measurements useful for characterizing adipocyte metabolism and health. Wherever possible, we describe technologies that can be used to automate characterization and increase throughput.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Esferoides Celulares , Células Estromais , Obesidade/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular
2.
Plast Reconstr Surg ; 153(1): 79e-90e, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014960

RESUMO

BACKGROUND: Adipose stem cells (ASCs) are a promising cell-based immunotherapy because of their minimally invasive harvest, high yield, and immunomodulatory capacity. In this study, the authors investigated the effects of local versus systemic ASC delivery on vascularized composite allotransplant survival and alloimmune regulation. METHODS: Lewis rats received hind-limb transplants from Brown Norway rats and were administered donor-derived ASCs (passage 3 or 4, 1 × 10 6 cells/rat) locally in the allograft, or contralateral limb, or systemically at postoperative day 1. Recipients were treated intraperitoneally with rabbit anti-rat lymphocyte serum on postoperative days 1 and 4 and daily tacrolimus for 21 days. Limb allografts were monitored for clinical signs of rejection. Donor cell chimerism, immune cell differentiation, and cytokine expression in recipient lymphoid organs were measured by flow cytometric analysis. The immunomodulation function of ASCs was tested by mixed lymphocyte reaction assay and ASC stimulation studies. RESULTS: Local-ASC-treated recipients achieved significant prolonged allograft survival (85.7% survived >130 days; n = 6) compared with systemic-ASC and contralateral-ASC groups. Secondary donor skin allografts transplanted to the local-ASC long-term surviving recipients accepted permanently without additional immunosuppression. The increases in donor cell chimerism and regulatory T-cells were evident in blood and draining lymph nodes of the local-ASC group. Moreover, mixed lymphocyte reaction showed that ASCs inhibited donor-specific T-cell proliferation independent of direct ASC-T-cell contact. ASCs up-regulated antiinflammatory molecules in response to cytokine stimulation in vitro. CONCLUSION: Local delivery of ASCs promoted long-term survival and modulated alloimmune responses in a full major histocompatibility complex-mismatched vascularized composite allotransplantation model and was more effective than systemic administration. CLINICAL RELEVANCE STATEMENT: ASCs are a readily available and abundant source of therapeutic cells that could decrease the amount of systemic immunosuppression required to maintain limb and face allografts.


Assuntos
Alotransplante de Tecidos Compostos Vascularizados , Ratos , Animais , Coelhos , Ratos Endogâmicos Lew , Ratos Endogâmicos BN , Membro Posterior/cirurgia , Aloenxertos , Citocinas , Células-Tronco , Sobrevivência de Enxerto , Imunossupressores
3.
Plast Reconstr Surg ; 151(6): 947e-958e, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728782

RESUMO

BACKGROUND: Mechanical emulsification of adipose tissue to concentrate protein and stromal cell components (ie, nanofat) has gained considerable interest in clinical practice. Although the regenerative potential of nanofat has largely been used in aesthetic applications, these effects have considerable potential in reconstruction as well. Here, the authors investigated the therapeutic properties of nanofat injected directly into the denervated gastrocnemius after a sciatic nerve injury in Lewis rats. METHODS: Muscle denervation was induced by transecting and immediately repairing the sciatic nerve. Inguinal and subcutaneous adipose was harvested from donor rodents, processed into nanofat, and then injected intramuscularly into the gastrocnemius. Gait analysis was performed weekly. Rodents were euthanized at 9 and 12 weeks, after which tetanic contraction force was measured, and gene expression, histology, and cytokine multiplexing were performed. RESULTS: Intramuscular injection of nanofat significantly increased maximum tetanic force generation at 9 and 12 weeks. The forces of the nanofat-injected gastrocnemii were better correlated to their contralateral gastrocnemii relative to controls. Muscle repair-associated inflammatory gene expressions were significantly up-regulated in nanofat-injected gastrocnemii. Cytokines interleukin (IL)-1ß, IL-18, vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, and tissue inhibitor of metalloproteinase-1 were significantly higher in nanofat-injected gastrocnemii relative to control gastrocnemii, and the tetanic force was linearly and significantly correlated to IL-1ß and IL-18 and their interacting effects. CONCLUSIONS: Intramuscular injection of emulsified adipose tissue (nanofat) significantly increased gastrocnemii contraction force after sciatic nerve injury, with prolonged reconstructive inflammation by means of CD68, inducible nitric oxide synthase, IL-1ß, and IL-18 all being potential mechanisms for this recovery. This application could potentially increase the therapeutic breadth of nanofat to include muscular recovery after nerve injury. CLINICAL RELEVANCE STATEMENT: The authors' study investigates a clinically translatable therapy to mitigate muscle atrophy after nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Injeções Intramusculares , Interleucina-18 , Inibidor Tecidual de Metaloproteinase-1 , Fator A de Crescimento do Endotélio Vascular , Ratos Endogâmicos Lew , Nervo Isquiático/lesões , Citocinas , Regeneração Nervosa/fisiologia
4.
Aesthet Surg J ; 43(6): NP449-NP465, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36611261

RESUMO

BACKGROUND: Autologous fat grafting, although broadly indicated, is limited by unsatisfactory retention and often requires multiple procedures to achieve durable outcomes. Graft survival is strongly influenced by the magnitude and duration of post-engraftment ischemia. Calcitriol is a pleiotropic, safe nutrient with cell-specific influence on viability and metabolic flux. OBJECTIVES: Evaluate the efficacy of activated vitamin D3 (calcitriol) in improving grafting outcomes and examine its mechanisms. METHODS: Lipoaspirate was collected for ex vivo culture (7 unique donors), in vitro bioenergetic analysis (6 unique donors), and in vivo transplantation (5 unique donors). Ex vivo samples were incubated for up to 2 weeks before extraction of the stromal vascular fraction (SVF) for viability or flow cytometry. SVF was collected for Seahorse (Agilent; Santa Clara, CA) analysis of metabolic activity. Human endothelial cell lines were utilized for analyses of endothelial function. In vivo, samples were implanted into athymic mice with calcitriol treatment either (1) once locally or (2) 3 times weekly via intraperitoneal injection. Grafts were assessed photographically, volumetrically, and histologically at 1, 4, and 12 weeks. Hematoxylin and eosin (H&E), Sirius red, perilipin, HIF1α, and CD31 tests were performed. RESULTS: Calcitriol-treated lipoaspirate demonstrated dose-dependent increases in SVF viability and metabolic reserve during hypoxic stress. Calcitriol treatment enhanced endothelial mobility ex vivo and endothelial function in vitro. In vivo, calcitriol enhanced adipocyte viability, reduced fibrosis, and improved vascularity. Continuous calcitriol was sufficient to improve graft retention at 12 weeks (P < .05). CONCLUSIONS: Calcitriol increased fat graft retention in a xenograft model. Calcitriol has potential to be a simple, economical means of increasing fat graft retention and long-term outcomes.


Assuntos
Tecido Adiposo , Calcitriol , Camundongos , Animais , Humanos , Tecido Adiposo/transplante , Calcitriol/farmacologia , Colecalciferol/farmacologia , Xenoenxertos , Adipócitos/transplante , Modelos Animais de Doenças , Sobrevivência de Enxerto
5.
Wound Repair Regen ; 31(1): 120-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36053849

RESUMO

Robust and predictive pre-clinical models of recalcitrant diabetic wounds are critical for advancing research efforts toward improving healing. Murine models have logistic and genetic benefits versus larger animals; however, native murine healing inadequately represents clinically recalcitrant wounds in humans. Furthermore, current humanization techniques employing devices, deleterious mutations or chemical agents each carry model-specific limitations. To better replicate human wounds in a mouse, we developed a novel wound-edge inversion (WEI) technique that mimics the architecture of epibole and mitigates contracture, epithelialization, and consequently wound closure. In this study, we evaluated the reliability and durability of the WEI model in wild-type and obese diabetic mice and compared to healing after (i) punch biopsy, (ii) mechanical/silicone stenting or (iii) exogenous oxidative stressors. In wild-type mice, WEI demonstrated favourable closure characteristics compared to both control and stented wounds, however, wounds progressed to closure by 4 weeks. In contrast, diabetic WEI wounds persisted for 6-10 weeks with reduced contracture and epithelialization. In both diabetic and wild-type mice, WEI sites demonstrated persistence of inflammatory populations, absence of epithelialization, and histologic presence of alpha-SMA positive granulation tissue when compared to controls. We conclude that the WEI technique is particularly valuable for modelling recalcitrant diabetic wounds with sustained inflammation and dysfunctional healing.


Assuntos
Diabetes Mellitus Experimental , Cicatrização , Camundongos , Humanos , Animais , Diabetes Mellitus Experimental/patologia , Reprodutibilidade dos Testes , Pele/patologia , Reepitelização
6.
J Reconstr Microsurg ; 39(7): 493-501, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36584695

RESUMO

BACKGROUND: Free tissue transfer to cover complex wounds with exposed critical structures results in donor-site morbidity. Perfusion decellularization and recellularization of vascularized composite tissues is an active area of research to fabricate complex constructs without a donor site. Sodium dodecyl sulfate (SDS)-based protocols remain the predominant choice for decellularization despite the deleterious effects on tissue ultrastructure and capillary networks. We aimed to develop an automated decellularization process and compare different SDS perfusion times to optimize the protocol. METHODS: A three-dimensional-printed closed-system bioreactor capable of continuously perfusing fluid through the vasculature was used for decellularization. The artery and vein of rat epigastric fasciocutaneous free flaps were cannulated and connected to the bioreactor. Protocols had varying durations of 1% SDS solution (3, 5, and 10 days) followed by 1 day of 1% Triton X-100 and 1 day of 1x phosphate-buffered saline. The residual DNA was quantified. Microarchitecture of the constructs was assessed with histology, and the vascular network was visualized for qualitative assessment. RESULTS: The structural integrity and the microarchitecture of the extracellular matrix was preserved in the 3- and 5-day SDS perfusion groups; however, the subcutaneous tissue of the 10-day protocol lost its structure. Collagen and elastin structures of the pedicle vessels were not compromised by the decellularization process. Five-day SDS exposure group had the least residual DNA content (p < 0.001). Across all protocols, skin consistently had twice as much residual DNA over the subcutaneous tissues. CONCLUSION: A compact and integrated bioreactor can automate decellularization of free flaps to bioengineer regenerative constructs for future use in reconstruction of complex defects. A decellularization protocol with 5 days of 1% SDS exposure was the most successful to keep the residual DNA content at a minimum while preserving the structural integrity of the tissues.


Assuntos
Retalhos de Tecido Biológico , Ratos , Animais , Dodecilsulfato de Sódio/farmacologia , Dodecilsulfato de Sódio/análise , Dodecilsulfato de Sódio/química , Roedores , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , DNA/análise , DNA/farmacologia , Engenharia Tecidual/métodos , Tecidos Suporte
7.
Facial Plast Surg Aesthet Med ; 25(3): 250-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36327097

RESUMO

Background: To address the lack of non-cytotoxic, non-surgical options to treat undesirable focal adiposity of the face, we propose use of the anti-glaucoma medication and prostaglandin F2α analogue latanoprost, which has a well-described side effect of periorbital adipose shrinkage. Objective: To evaluate the safety and efficacy of soluble and liposomal latanoprost for focal fat reduction. Approach: To compare efficacy, single administrations of either the FDA-approved cytolytic drug deoxycholic acid (DOCA), latanoprost, or liposomal latanoprost were injected into ob/ob mouse inguinal fat pads. Study outcomes included mouse weight, inguinal fat pad volume, architecture, and cytotoxicity. Results: Both DOCA and soluble latanoprost significantly reduced inguinal fat pad volume whereas liposome encapsulation reduced inguinal fat pad volume insignificantly over the 14-day study period. Hematoxylin and eosin demonstrated effective reduction in adipocyte volume without histologic evidence of cytolysis or inflammation whereas DOCA caused dermal ulcerations, adipocyte lysis, and increased tissue inflammation. Conclusion: Latanoprost reduced fat volume without inducing cell lysis or inflammation.


Assuntos
Acetato de Desoxicorticosterona , Lipossomos , Humanos , Animais , Camundongos , Latanoprosta/uso terapêutico , Preparações de Ação Retardada , Adiposidade , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico
8.
Stem Cells Dev ; 31(19-20): 621-629, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442089

RESUMO

Adipose therapeutics, including isolated cell fractions and tissue emulsifications, have been explored for osteoarthritis (OA) treatment; however, the optimal preparation method and bioactive tissue component for healing has yet to be determined. This in vitro study compared the effects of adipose preparations on cultured knee chondrocytes. De-identified human articular chondrocytes were co-cultured with adipose preparations for 36 or 72 h. Human adipose tissues were obtained from abdominal panniculectomy procedures and processed using three different techniques: enzymatic digestion to release stromal vascular fraction (SVF), emulsification with luer-to-luer transfer (nanofat), and processing in a bead-mill (Lipogems, Lipogems International SpA, Milan, Italy). Gene expression in both chondrocytes and adipose preparations was measured to assess cellular inflammation, catabolism, and anabolism. Results demonstrated that chondrocytes cultured with SVF consistently showed increased inflammatory and catabolic gene expression compared with control chondrocytes at both 36- and 72-h timepoints. Alternatively, chondrocytes co-cultured with either nanofat or bead-mill processed adipose derivatives yielded minimal pro-inflammatory effects and instead increased anabolism and regeneration of cartilage extracellular matrix. Interestingly, nanofat preparations induced transient matrix anabolism while Lipogems adipose consistently demonstrated increased matrix synthesis at both study timepoints after co-culture. This evaluation of the regenerative potential of adipose-derived preparations as a clinical tool for knee OA treatment suggests that mechanically processed preparations may be more efficacious than an isolated SVF cell preparation.


Assuntos
Tecido Adiposo , Condrócitos , Humanos , Condrócitos/metabolismo , Técnicas de Cocultura , Cartilagem , Fenótipo
9.
Biomimetics (Basel) ; 6(3)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34562876

RESUMO

Critically sized defects in subcutaneous white adipose tissue result in extensive disfigurement and dysfunction and remain a reconstructive challenge for surgeons; as larger defect sizes are correlated with higher rates of complications and failure due to insufficient vascularization following implantation. Our study demonstrates, for the first time, a method to engineer perfusable, pre-vascularized, high-density adipose grafts that combine patient-derived adipose cells with a decellularized lung matrix (DLM). The lung is one of the most vascularized organs with high flow, low resistance, and a large blood-alveolar interface separated by a thin basement membrane. For our work, the large volume capacity within the alveolar compartment was repurposed for high-density adipose cell filling, while the acellular vascular bed provided efficient graft perfusion throughout. Both adipocytes and hASCs were successfully delivered and remained in the alveolar space even after weeks of culture. While adipose-derived cells maintained their morphology and functionality in both static and perfusion DLM cultures, perfusion culture offered enhanced outcomes over static culture. Furthermore, we demonstrate that endothelial cells seamlessly integrate into the acellular vascular tree of the DLM with adipocytes. These results support that the DLM is a unique platform for creating vascularized adipose tissue grafts for large defect filling.

11.
Acta Pharm Sin B ; 11(12): 3779-3790, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024306

RESUMO

PEGylated-l-asparaginase (PEG-ASNase) is a chemotherapeutic agent used to treat pediatric acute lymphoblastic leukemia (ALL). Its use is avoided in adults due to its high risk of liver injury including hepatic steatosis, with obesity and older age considered risk factors of the injury. Our study aims to elucidate the mechanism of PEG-ASNase-induced liver injury. Mice received 1500 U/kg of PEG-ASNase and were sacrificed 1, 3, 5, and 7 days after drug administration. Liver triglycerides were quantified, and plasma bilirubin, ALT, AST, and non-esterified fatty acids (NEFA) were measured. The mRNA and protein levels of genes involved in hepatic fatty acid synthesis, ß-oxidation, very low-density lipoprotein (VLDL) secretion, and white adipose tissue (WAT) lipolysis were determined. Mice developed hepatic steatosis after PEG-ASNase, which associated with increases in bilirubin, ALT, and AST. The hepatic genes Ppara, Lcad/Mcad, Hadhb, Apob100, and Mttp were upregulated, and Srebp-1c and Fas were downregulated after PEG-ASNase. Increased plasma NEFA, WAT loss, and adipose tissue lipolysis were also observed after PEG-ASNase. Furthermore, we found that PEG-ASNase-induced liver injury was exacerbated in obese and aged mice, consistent with clinical studies of ASNase-induced liver injury. Our data suggest that PEG-ASNase-induced liver injury is due to drug-induced lipolysis and lipid redistribution to the liver.

12.
Aesthet Surg J ; 41(11): NP1686-NP1694, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33337487

RESUMO

BACKGROUND: Many techniques and devices have been developed to improve small volume fat grafting efficiency and consistency for use in the operating room and outpatient procedure room. These methods require cumbersome or messy processing to remove excess oil and fluid from adipose graft. OBJECTIVES: The aim of this study was to compare the fat processing efficiency of a novel handheld device, the Push-to-Spin (P2S) system, with that of other common processing techniques and validate tissue quality after lipoaspirate processing. METHODS: Human lipoaspirate samples were processed by 1 of 3 methods: cotton gauze (Telfa) rolling, centrifugation (Coleman technique), or the P2S system. Efficiency of fat processing was evaluated in terms of total processing time, fat harvest ratio, and fat processed ratio. Histologic examination and immunohistochemical staining were used to compare tissue morphology and adipocyte viability, respectively. Experimental samples were compared with unprocessed lipoaspirate controls. RESULTS: Lipoaspirate processing was significantly faster with the P2S device than with other techniques. All 3 methods achieved similar fat harvest and fat processing ratios. Additionally, the P2S, Telfa, and Coleman techniques yielded grafts with similar cellularity and with similar perilipin and glycerol-3-phosphate dehydrogenase 1 expression. Measured differences between experimental and control samples were statistically significant. CONCLUSIONS: The P2S device is an easy-to-use, efficient, and potentially cost-effective handheld device that can be used for lipoaspirate harvest, processing, and grafting in any procedural setting. The resulting adipocytes have similar morphology, viability, and function to those yielded by other techniques. This handheld technology decreases procedure time, thereby improving surgeon efficiency and patient experience.


Assuntos
Tecido Adiposo/transplante , Lipectomia , Coleta de Tecidos e Órgãos/instrumentação , Adipócitos , Centrifugação , Humanos , Transplante Autólogo
13.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271950

RESUMO

BACKGROUND: Autologous fat transfer in the form of lipoaspirates for the reconstruction of the breast after breast cancer surgery is a commonly used procedure in plastic surgery. However, concerns regarding the oncologic risk of nutrient-rich fat tissue are widely debated. Previous studies have primarily focused on studying the interaction between adipose-derived stem cells (ASCs) and breast cancer cells. METHODS: In this study, we performed a comprehensive analysis of the paracrine- and contact-based interactions between lipoaspirates, ASCs and breast cancer cell lines. An inverted flask culture method was used to study the contact-based interaction between lipoaspirates and breast cancer cells, while GFP-expressing breast cancer cell lines were generated to study the cell-cell contact interaction with ASCs. Three different human breast cancer cell lines, MCF-7, MDA-MB-231 and BT-474, were studied. We analyzed the impact of these interactions on the proliferation, cell cycle and epithelial-to-mesenchymal (EMT) transition of the breast cancer cells. RESULTS: Our results revealed that both lipoaspirates and ASCs do not increase the proliferation rate of the breast cancer cells either through paracrine- or contact-dependent interactions. We observed that lipoaspirates selectively inhibit the proliferation of MCF-7 cells in contact co-culture, driven by the retinoblastoma (Rb) protein activity mediating cell cycle arrest. Additionally, ASCs inhibited MDA-MB-231 breast cancer cell proliferation in cell-cell contact-dependent interactions. Quantitative real-time PCR revealed no significant increase in the EMT-related genes in breast cancer cells upon co-culture with ASCs. CONCLUSION: In conclusion, this study provides evidence of the non-oncogenic character of lipoaspirates and supports the safety of clinical fat grafting in breast reconstruction after oncological surgical procedures. In vivo studies in appropriate animal models and long-term post-operative clinical data from patients are essential to reach the final safety recommendations.


Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama/metabolismo , Comunicação Celular , Células-Tronco/metabolismo , Biomarcadores , Neoplasias da Mama/patologia , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados , Feminino , Humanos , Imunofenotipagem , Lipectomia , Mamoplastia , Cultura Primária de Células
14.
Front Immunol ; 11: 826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435248

RESUMO

Background: Mesenchymal stromal cell (MSC)-based cytotherapies fuel the hope for reduction of chronic systemic immunosuppression in allotransplantation, and our group has previously shown this capability for both swine and human cells. MSCs harvested from distinct anatomical locations may have different behavior and lead to different outcomes in both preclinical research and human trials. To provide an effective reference for cell therapy studies, we compared human and porcine MSCs from omental fat (O-ASC), subcutaneous fat (SC-ASC) and bone marrow (BM-MSC) under rapid culture expansion with endothelial growth medium (EGM). Methods: MSCs isolated from pigs and deceased human organ donors were compared for yield, viability, cell size, population doubling times (PDT), surface marker expression and differentiation potential after rapid expansion with EGM. Immunosuppressant toxicity on MSCs was investigated in vitro for four different standard immunosuppressive drugs. Immunomodulatory function was compared in mixed lymphocyte reaction assays (MLR) with/without immunosuppressive drug influence. Results: Human and porcine omental fat yielded significantly higher cell numbers than subcutaneous fat. Initial PDT was significantly shorter in ASCs than BM-MSCs and similar thereafter. Viability was reduced in BM-MSCs. Porcine MSCs were positive for CD29, CD44, CD90, while human MSCs expressed CD73, CD90 and CD105. All demonstrated confirmed adipogenic differentiation capacity. Cell sizes were comparable between groups and were slightly larger in human cells. Rapamycin revealed slight, mycophenolic acid strong and significant dose-dependent toxicity on viability/proliferation of almost all MSCs at therapeutic concentrations. No relevant toxicity was found for Tacrolimus and Cyclosporin A. Immunomodulatory function was dose-dependent and similar between groups. Immunosuppressants had no significant adverse effect on MSC immunomodulatory function. Discussion: MSCs from different harvest locations and donor species differ in terms of isolation yields, viability, PDT, and size. We did not detect relevant differences in immunomodulatory function with or without the presence of immunosuppressants. Human and pig O-ASC, SC-ASC and BM-MSC share similar immunomodulatory function in vitro and warrant confirmation in large animal studies. These findings should be considered in preclinical and clinical MSC applications.


Assuntos
Medula Óssea/patologia , Colo/patologia , Endotélio/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Gordura Subcutânea/patologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Imunomodulação , Suínos , Doadores de Tecidos
15.
Plast Reconstr Surg Glob Open ; 8(1): e2574, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32095393

RESUMO

Biomaterials derived from human adipose extracellular matrix have shown promise in vitro and in animal studies as an off-the-shelf adipogenic matrix for sustained volume replacement. Herein, we report the results of a randomized prospective study conducted with allograft adipose matrix (AAM) grafted into the pannus of presurgical abdominoplasty patients 3 or 6 months before scheduled surgery. This is the first report of a longitudinal histologic analysis of AAM in clinical use. METHODS: Ten healthy patients undergoing elective abdominoplasty were recruited to receive AAM before surgery. Enrolled subjects were randomized into either a 3-month follow-up cohort or a 6-month follow-up cohort. Subjects were monitored for adverse events associated with AAM grafting in addition to undergoing serial biopsy. Following surgical excision of the pannus, representative samples from the AAM surgical sites were stained and evaluated with hematoxylin and eosin for tissue morphology, Masson's trichrome for collagen, and perilipin for adipocytes. RESULTS: All subjects tolerated AAM with no severe adverse events reported. At 3 months following implantation, AAM remained visible within the confines of the subjects' native surrounding adipose tissue with sparse adipocytes apparent within the matrix. By 6 months, AAM had remodeled and was primarily composed of perilipin-positive adipocytes. Histologic analysis confirmed tissue remodeling (hematoxylin and eosin), adipogenesis (perilipin), and angiogenesis (Masson's trichrome) occurred with the presence of AAM. CONCLUSIONS: AAM is a safe, allogeneic, off-the-shelf regenerative matrix that is adipogenic and noninflammatory and promotes angiogenesis.

16.
PM R ; 12(8): 805-816, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31755664

RESUMO

Musculoskeletal injuries are among the most prevalent, disabling, and costly conditions that Americans face, affecting over half of those over 18 and nearly 75% of those over 65 years old. Current treatments are largely palliative for many of these conditions and unmet needs have warranted the emergence of alternative treatments. Orthobiologics, such as adipose tissue derivatives (ATDs), are of high interest because they can be obtained in the office setting and their cellular components, including adipose stem cells and stromal cells, are thought to be beneficial in the treatment of musculoskeletal injuries. Microfragmented adipose tissue (MFAT) and stromal vascular fraction (SVF) are two ATD injectates that are used in the clinical setting to treat musculoskeletal conditions. Our review aimed to clarify the terminology describing the various ATDs used for orthopedic indications while discussing the promising but low-quality evidence, heterogeneity in MFAT and SVF processing methods, and inconsistencies in reported information such as injectate characterization with cell counts, injection technique, and postprocedural rehabilitation.


Assuntos
Tecido Adiposo , Terapia Baseada em Transplante de Células e Tecidos , Sistema Musculoesquelético/lesões , Tecido Adiposo/citologia , Humanos , Células-Tronco , Células Estromais
18.
Plast Reconstr Surg Glob Open ; 7(6): e2275, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31624681

RESUMO

BACKGROUND: Variable retention outcomes remain a significant issue in autologous fat grafting procedures. Among seemingly similar patients, using identical harvesting procedures, variability in graft retention is noted. Recent data suggest that the inherent characteristics of donor adipose tissue dictate graft healing outcomes. The goal of this study was to elucidate intrinsic qualities of human adipose tissue that confer resistance to ischemic stress to therapeutically target such mechanisms and improve overall results of fat grafts. METHODS: Whole fat from 5 female patients was cultured in vitro under severe (1% O2) and mild (8% O2) hypoxic conditions. Microarray analysis of 44 hypoxia-related genes was performed. Perilipin was used to visualize viable adipocytes. Macrophage phenotypes were identified using PCR. RESULTS: Analysis of adipocyte survival with perilipin suggested improved viability for tissue obtained from high BMI donors. Microarray data revealed a significant positive correlation for induced expression of ANGPTL4, a survival gene, and subject BMI (P = 0.0313) during hypoxic conditions whereas HIF1α and HIF2α genes were negatively correlated with donor BMI (P = 0.0003 and 0.0303). Interestingly, induced differentiation of proinflammatory M1 macrophages was negatively correlated with BMI under hypoxia (P = 0.0177). CONCLUSIONS: The innate resilience of adipocytes to hypoxia and relative macrophage activation play a crucial role in fat graft retention. This study suggests that adipose tissue from high BMI donors demonstrates greater resistance to hypoxia-induced apoptosis associated with an increased expression of ANGPTL4. Therefore, therapeutic interventions that target this factor may improve clinical adipose graft survival.

19.
Plast Reconstr Surg ; 143(2): 299e-309e, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30688888

RESUMO

BACKGROUND: Adipose tissue reaches cellular stasis after puberty, leaving adipocytes unable to significantly expand or renew under normal physiologic conditions. This is problematic in progressive lipodystrophies, in instances of scarring, and in soft-tissue damage resulting from lumpectomy and traumatic deformities, because adipose tissue will not self-renew once damaged. This yields significant clinical necessity for an off-the-shelf de novo soft-tissue replacement mechanism. METHODS: A process comprising separate steps of removing lipid and cellular materials from adipose tissue has been developed, creating an ambient temperature-stable allograft adipose matrix. Growth factors and matrix proteins relevant to angiogenesis and adipogenesis were identified by enzyme-linked immunosorbent assay and immunohistochemistry, and subcutaneous soft-tissue integration of the allograft adipose matrix was investigated in vivo in both the athymic mouse and the dorsum of the human wrist. RESULTS: Allograft adipose matrix maintained structural components and endogenous growth factors. In vitro, adipose-derived stem cells cultured on allograft adipose matrix underwent adipogenesis in the absence of media-based cues. In vivo, animal modeling showed vasculature formation followed by perilipin A-positive tissue segments. Allograft adipose matrix maintained soft-tissue volume in the dorsal wrist in a 4-month investigation with no severe adverse events, becoming palpably consistent with subcutaneous adipose. CONCLUSIONS: Subcutaneous implantation of allograft adipose matrix laden with retained angiogenic and adipogenic factors served as an inductive scaffold for sustaining adipogenesis. Tissue incorporation assessed histologically from both the subcutaneous injection site of the athymic nude mouse over 6 months and human dorsal wrist presented adipocyte morphology residing within the injected scaffold.


Assuntos
Adipócitos/transplante , Adipogenia/fisiologia , Matriz Extracelular/transplante , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Animais , Biópsia por Agulha , Humanos , Imuno-Histoquímica , Injeções Subcutâneas , Camundongos , Camundongos Nus , Modelos Animais , Rejuvenescimento , Transplante de Células-Tronco/métodos , Tecidos Suporte , Transplante Autólogo
20.
Plast Reconstr Surg ; 143(1): 103-112, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30589782

RESUMO

BACKGROUND: Clinical outcomes suggest that postoncologic reconstruction with fat grafting yields cumulative incidence curves of recurrence comparable to those of other breast reconstruction procedures; however, results from experimental research studies suggest that adipose stem cells can stimulate cancer growth. In this study, a novel animal model of residual cancer was developed in mouse mammary pads to test whether lipofilling impacts the probability of locoregional recurrence of breast cancer after breast conserving surgery. METHODS: Mammary fat pads of female NOD-SCID gamma mice were each injected with MCF-7 cells in Matrigel. Tumors were allowed to engraft for 2 weeks, after which time either sterile saline (n = 20) or human fat graft (n = 20) was injected adjacent to tumor sites. After 8 weeks, tumors were assessed for volume measurement, histologic grade, Ki67 positivity, and metastatic spread. RESULTS: Animals receiving lipofilling after tumor cell engraftment had lower tumor volume and mass (p = 0.046 and p = 0.038, respectively). Macroscopic invasion was higher in the saline group. Histologic grade was not significantly different in the two groups (p = 0.17). Ki67 proliferation index was lower in tumors surrounded by fat graft (p = 0.01). No metastatic lesion was identified in any animal. CONCLUSIONS: Adipose transfer for breast reconstruction performed in the setting of residual breast tumor in a clinically relevant animal model did not increase tumor size, proliferation, histologic grade, or metastatic spread. This study supports the oncologic safety of lipofilling as part of the surgical platform for breast reconstruction after cancer therapy.


Assuntos
Tecido Adiposo/transplante , Neoplasias da Mama/cirurgia , Mamoplastia/métodos , Recidiva Local de Neoplasia/patologia , Neoplasia Residual/cirurgia , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasia Residual/patologia , Distribuição Aleatória , Medição de Risco , Estatísticas não Paramétricas , Transplante de Tecidos/métodos , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...